问题 填空题
实数x,y满足tanx=x,tany=y,且|x|≠|y|,则
sin(x+y)
x+y
-
sin(x-y)
x-y
=______.
答案

tanx=

sinx
cosx
=x

∴sinx=xcosx

同理,siny=ycosy

所以原式=

sinxcosy+cosxsiny
x+y
-
sinxcosy-cosxsiny
x-y

=

xcosxcosy-ycosxcosy
x-y
-
xcosxcosy+ycosxcosy
x+y

=

cosxcosy(x+y)
x+y
-
cosxcosy(x-y)
x-y

=cosxcosy-cosxcosy

=0

故答案为:0

问答题 简答题
单项选择题