问题
解答题
已知A、B、C分别是△ABC的三个内角,且cosA•cos(A-B)=cosB.
(1)求证:△ABC是等腰三角形;
(2)若tanA=2,求tanC的值.
答案
(1)由已知,得cosA(cosAcosB+sinAsinB)=cosB,
即(1-cos2A)cosB=sinAcosAsinB,
亦即sin2AcosB=sinAcosAsinB.
因为sinA>0,所以sinAcosB=cosAsinB,
于是sin(A-B)=0.
又-π<A-B<π,从而A=B.
故△ABC是等腰三角形.
(2)在△ABC中,有C=π-(A+B)=π-2A,
所以tanC=tan(π-2A)=-tan2A.
由tanA=2得tan2A=
=-2tanA 1-tan2A 4 3
所以tanC的值为
.4 3