问题 解答题
在△ABC中,A=
π
6
B∈(
π
2
6
)
,BC=2.
(Ⅰ)若B=
3
,求sinC;
(Ⅱ)求证:AB=4sin(
6
-B)

(Ⅲ)求
BA
BC
的取值范围.
答案

(Ⅰ)sinC=sin(π-A-B)=sin

π
6
=
1
2

(Ⅱ)证明:在△ABC中,由正弦定理得

AB
sinC
=
BC
sinA

∵BC=2,sinA=

1
2
,B+C=
6

∴AB=

BCsinC
sinA
=4sin(
6
-B);

(Ⅲ)∵|

BC
|=2,|
BA
|=4sin(
6
-B),

BA
BC
=|
BA
||
BC
|cosB=8sin(
6
-B)cosB=8cosB(
1
2
cosB+
3
2
sinB)=4sin(2B+
π
6
)+2

=2+2cos2B+2

3
sin2B=4sin(2B+
π
6
)+2,

∵B∈(

π
2
6
),∴2B+
π
6
∈(
6
11π
6
),

∴sin(2B+

π
6
)∈[-1,-
1
2
),

BA
BC
=的取值范围是[-2,0).

选择题
单项选择题