问题
解答题
在△ABC中,A=
(Ⅰ)若B=
(Ⅱ)求证:AB=4sin(
(Ⅲ)求
|
答案
(Ⅰ)sinC=sin(π-A-B)=sin
=π 6
;1 2
(Ⅱ)证明:在△ABC中,由正弦定理得
=AB sinC
,BC sinA
∵BC=2,sinA=
,B+C=1 2
,5π 6
∴AB=
=4sin(BCsinC sinA
-B);5π 6
(Ⅲ)∵|
|=2,|BC
|=4sin(BA
-B),5π 6
∴
•BA
=|BC
||BA
|cosB=8sin(BC
-B)cosB=8cosB(5π 6
cosB+1 2
sinB)=4sin(2B+3 2
)+2π 6
=2+2cos2B+2
sin2B=4sin(2B+3
)+2,π 6
∵B∈(
,π 2
),∴2B+5π 6
∈(π 6
,7π 6
),11π 6
∴sin(2B+
)∈[-1,-π 6
),1 2
则
•BA
=的取值范围是[-2,0).BC