问题
解答题
已知(
|
答案
已知(
+1 sinθ
)•1 tanθ
=(1-cosθ cosθ
+1 sinθ
)•cosθ sinθ 1-cosθ cosθ
=
•1+cosθ sinθ
=1-cosθ cosθ
=1-cos2θ sinθcosθ
=sin2θ sinθcosθ
=tanθ,即tanθ=2sinθ cosθ
又
=1 2sinθcosθ+cos2
=cos2θ+sin2θ 2sinθcosθ+cos2θ
=cos2θ+sin2θ cos2θ 2sinθcosθ+cos2θ cos2θ 1+tan2θ 2tanθ+1
将tanθ=2代入得:原式=
=11+22 2×2+1