问题
解答题
抛物线y2=4px(p>0)的准线与x轴交于M点,过点M作直线l交抛物线于A、B两点. (1)若线段AB的垂直平分线交x轴于N(x0,0),求证:x0>3p; (2)若直线l的斜率依次为p,p2,p3,…,线段AB的垂直平分线与x轴的交点依次为N1,N2,N3,…,当0<p<1时,求
|
答案
(1)证明:设直线l方程为y=k(x+p),代入y2=4px.
得k2x2+(2k2p-4p)x+k2p2=0.
△=4(k2p-2p)2-4k2•k2p2>0,
得0<k2<1.
令A(x1,y1)、B(x2,y2),则x1+x2=-
,y1+y2=k(x1+x2+2p)=2k2p-4p k2
,4p k
AB中点坐标为(
,2P-k2P k2
).2p k
AB垂直平分线为y-
=-2p k
(x-1 k
).2P-k2P k2
令y=0,得x0=
=p+k2P+2P k2
.2P k2
由上可知0<k2<1,∴x0>p+2p=3p.
∴x0>3p.
(2)∵l的斜率依次为p,p2,p3,时,AB中垂线与x轴交点依次为N1,N2,N3,(0<p<1).
∴点Nn的坐标为(p+
,0).2 p2n-1
|NnNn+1|=|(p+
)-(p+2 p2n-1
)|=2 p2n+1
,2(1-p2) p2n+1
=1 |NnNn+1|
,p2n+1 2(1-p2)
所求的值为
[p3+p4++p21]=1 2(1-p2)
.p3(1-p19) 2(1-p)2(1+p)