已知
(Ⅰ)当x∈[
(Ⅱ)当x∈[
|
(I)∵
•a
=5b
sinxcosx+2cos2x,3
2=sin2x+4cos2x|b|
∴f(x)=
•a
+|b
|2+b
=53 2
sinxcosx+2cos2x+sin2x+4cos2x+3 3 2
=
sin2x+3(1+cos2x)+5 3 2
(1-cos2x)+1 2 3 2
=
sin2x+5 3 2
cos2x+5=5sin(2x+5 2
)+5π 6
∵x∈[
,π 6
],∴2x+π 2
∈[π 6
,π 2
]7π 6
因此,-
≤sin(2x+1 2
)≤1,可得函数f(x)的值域是[π 6
,10].…(6分)5 2
(Ⅱ)由(I)得5sin(2x+
)+5=8,得sin(2x+π 6
)=π 6 3 5
∵x∈[
,π 6
],∴2x+π 2
∈[π 6
,π 2
]7π 6
∴cos(2x+
)=-π 6
=-1-(
)23 5
,…(10分)4 5
∴sin2x=sin[(2x+
)-π 6
]=π 6
•3 5
-(-3 2
)•4 5
=1 2 3
+43 10
因此,f(x-
)=5sin2x+5=π 12
+7.…(12分)3 3 2