问题 解答题
已知平面上三个向量
a
 ,
b
 ,
c
,其中
a
=(1, 2)

(1)若|
c
|=2
5
,且
a
c
,求
c
的坐标;
(2)若|
b
|=
5
2
,且(
a
+2
b
)⊥(2
a
-
b
)
,求
a
b
夹角的余弦值.
答案

(1)设

c
=(x,y),由条件有
x2+y2=20
y=2x

解得:

x=2
y=4
,或
x=-2
y=-4

所以:

c
=(2, 4),或
c
=(-2,-4)

(2)设

a
, 
b
的夹角为θ,由(
a
+2
b
)⊥(2
a
-
b
)

(

a
+2
b
)•(2
a
-
b
)=0,

即:2

a
2+3
a
b
-2
b
2
=0,

由于

a
=(1, 2)⇒|
a
| =
1+4
=
5

a
 2=5,又|
b
|=
5
2

所以:

a
b
=
2
3
(
b
2
-
a
2
)=
5
6

cosθ=

a
b
|
a
||
b
|
=
5
6
5
5
2
=
5
15

单项选择题
问答题 简答题