问题
解答题
已知O为△ABC的外心,以线段OA、OB为邻边作平行四边形,第四个顶点为D,再以OC、OD为邻边作平行四边形,它的第四个顶点为H. (1)若
(2)证明:
(3)若△ABC的∠A=60°,∠B=45°,外接圆的半径为R,用R表示|
|
答案
(1)由平行四边形法则可得:
=OH
+OC
=OD
+OC
+OA OB
即
=h
+a
+b c
(2)∵O是△ABC的外心,
∴|
|=|OA
|=|OB
|,OC
即|
|=|a
|=|b
|,而c
=AH
-OH
=OA
-h
=a
+b
,c
=CB
-OB
=OC
-b c
∴
•AH
=(CB
+b
•(c)
-b
)=|c
|-|b
|=0,∴c
⊥AH CB
(3)在△ABC中,O是外心A=60°,B=45°
∴∠BOC=120°,∠AOC=90°
于是∠AOB=150°|
|2=(h
+a
+b
)2=c
2+a
2+b
2+2c
•a
+2b
•b
+2c
•c a
=3R2+2|
|•|a
|•cos150°+2|b
|•|a
|•cos90 °+2|c
|•|b
|•cos120°c
=(2-
)R23
∴|
|=h
R
-6 2 2