问题 解答题
已知O为△ABC的外心,以线段OA、OB为邻边作平行四边形,第四个顶点为D,再以OC、OD为邻边作平行四边形,它的第四个顶点为H.
(1)若
OA
=
a
OB
=
b
OC
=
c
OH
=
h
,试用
a
b
c
表示
h

(2)证明:
AH
BC

(3)若△ABC的∠A=60°,∠B=45°,外接圆的半径为R,用R表示|
h
|
答案

(1)由平行四边形法则可得:

OH
=
OC
+
OD
=
OC
+
OA
+
OB

h
=
a
+
b
+
c

(2)∵O是△ABC的外心,

∴|

OA
|=|
OB
|=|
OC
|,

即|

a
|=|
b
|=|
c
|,而
AH
=
OH
-
OA
=
h
-
a
=
b
+
c
CB
=
OB
-
OC
=
b
-
c

AH
CB
=(
b
+
c)
•(
b
-
c
)
=|
b
|-|
c
|=0,∴
AH
CB

(3)在△ABC中,O是外心A=60°,B=45°

∴∠BOC=120°,∠AOC=90°

于是∠AOB=150°|

h
|2=(
a
+
b
+
c
)2=
a
2
+
b
2
+
c
2
+2
a
b
+2
b
c
+2
c
a

=3R2+2|

a
|•|
b
|•cos150°+2|
a
|•|
c
|•cos90 
°+2|
b
|•|
c
|•cos120°

=(2-

3
)R2

|

h
|=
6
-
2
2
R

解答题
单项选择题