问题 解答题
△ABC内接于⊙O:x2+y2=1(O为坐标原点),且3
OA
+4
OB
+5
OC
=0

(1)求△AOC的面积;
(2)若
OA
=(1,0)
OC
=(cos(θ-
π
4
),sin(θ-
π
4
)),θ∈(-
4
,0)
,求sinθ.
答案

(1)∵3

OA
+4
OB
+5
OC
=0

3

OA
+4
OB
=-5
OC

据向量加法的平行四边形法则得sin∠AOC=

4
5
,cos∠AOC=-
3
5

∴△AOC的面积=

1
2
OA•OC•sin∠AOC=
2
5

(2)∵

OA
• 
OC
=(1,0)•(cos(θ-
π
4
),sin(θ-
π
4
))
=cos(θ-
π
4
)

OA
OC
=
|OA
||
OC
|cos∠AOC
-
3
5

cos(θ-

π
4
)=-
3
5

θ∈(-

4
,0)

θ-

π
4
∈(-π,-
π
4
)

sin(θ-

π
4
)=-
4
5

∴sinθ=sin[(θ-

π
4
)+
π
4
]=sin(θ-
π
4
)cos
π
4
+cos(θ-
π
4
)sin
π
4
=-
7
2
10

单项选择题 A型题
多项选择题