问题
解答题
(1)已知
(2)设
|
答案
(1)①∵
与a
共线,b
∴存在非零实数λ使得
=λa
,b
∴2x-y+1=2λ x+y-2=-2λ
∴x=
,y∈R;1 3
②由
⊥a
得,(2x-y+1)×2+(x+y-2)×(-2)=0b
所以x-2y+3=0.(i)
由|
|=|a
|得,(2x-y+1)2+(x+y-2)2=8.(ii)b
解(i)(ii)得
或x=-1 y=1
;x= 5 3 y= 7 3
(2)由题意,|
|=a
=
2a
=(
+2i
)2j
,①|5
|=b
=
2b
=(-3
+i
)2j
,②10
•a
=(b
+2i
)(-3j
+i
)=-1③…(10分)j
∵(k
-a
)⊥(b
+ka
),b
∴(k
-a
)•(b
+ka
)=0,得,k|b
|2-k|a
|2+(k2-1)b
•a
=0b
将①②③代入得:k2+5k-1=0,…(12分)
解得k=
…(14分)-5± 29 2