问题 解答题
设A,B为圆x2+y2=1上两点,O为坐标原点(A,O,B不共线)
(1)求证:
OA
+
OB
OA
-
OB
垂直.
(2)当∠xOA=
π
4
,∠xOB=θ,θ∈(-
π
4
π
4
)
OA
OB
=
3
5
时,求sinθ的值.
答案

(1)证明:∵A,B为圆x2+y2=1上两点,O为坐标原点

∴|

OA
|=|
OB
|=1,

又∵(

OA
+
OB
)•(
OA
-
OB

=

OA
2-
OB
2

=|

OA
|2-|
OB
|
2

=1-1=0

OA
+
OB
OA
-
OB
…(4分)

(2)∵∠xOA=

π
4
,∠xOB=θ,θ∈(-
π
4
π
4
)

A(cos

π
4
,sin
π
4
),B(cosθ,sinθ)

OA
OB
=cos
π
4
cosθ+sin
π
4
sinθ=sin(
π
4
+θ)=
3
5
…(8分)

θ∈(-

π
4
π
4
)

∴θ+

π
4
∈(0,
π
2
)

cos(θ+

π
4
)=
4
5
…(10分)

sinθ=sin(θ+

π
4
-
π
4
)=sin(θ+
π
4
)cos
π
4
-cos(θ+
π
4
)sin
π
4
=-
2
10

单项选择题
选择题