问题
解答题
设A,B为圆x2+y2=1上两点,O为坐标原点(A,O,B不共线) (1)求证:
(2)当∠xOA=
|
答案
(1)证明:∵A,B为圆x2+y2=1上两点,O为坐标原点
∴|
|=|OA
|=1,OB
又∵(
+OA
)•(OB
-OA
)OB
=
2-OA
2OB
=|
|2-|OA
|2OB
=1-1=0
∴
+OA
⊥OB
-OA
…(4分)OB
(2)∵∠xOA=
,∠xOB=θ,θ∈(-π 4
,π 4
)π 4
∴A(cos
,sinπ 4
),B(cosθ,sinθ)π 4
∴
•OA
=cosOB
cosθ+sinπ 4
sinθ=sin(π 4
+θ)=π 4
…(8分)3 5
∵θ∈(-
,π 4
)π 4
∴θ+
∈(0,π 4
)π 2
∴cos(θ+
)=π 4
…(10分)4 5
sinθ=sin(θ+
-π 4
)=sin(θ+π 4
)cosπ 4
-cos(θ+π 4
)sinπ 4
=-π 4 2 10