问题 填空题
已知△ABC为等腰直角三角形,∠A=90°,且
AB
=
a
+
b
AC
=
a
-
b
,若
a
=(sinθ,cosθ)(θ∈R),则△ABC的面积为______.
答案

∵△ABC为等腰直角三角形,∠A=90°,

AB
=
a
+
b
AC
=
a
-
b

|
a
+
b
|=|
a
-
b
|
(
a
+
b
)⊥(
a
-
b
)

a
b
,且|
a
|=|
b
|,

a
=(sinθ,cosθ)(θ∈R),

∴|

a
|=
sin2θ+cos2θ
=1.

∴|

a
+
b
|=|
a
-
b
|=
a
2
+
b
2
±2
a
b
=
2

∴△ABC的面积S=

1
2
×|
a
+
b
|×|
a
-
b
|=
1
2
×
2
×
2
=1.

故答案为:1.

单项选择题
单项选择题