问题
解答题
用平面向量的方法证明:三角形的三条中线交于一点.
答案
证明:在△ABC中,设D、E、F分别为BC、AC、AB的中点,BE与AC的交点为G,
设
=BA
,e1
=BC
,则e2
=CA
-e1
,e2
,e1
不共线,e2
=AD
-BD
=BA 1 2
-e2
,e1
设
=λBG
,则BE
=AG
-BG
=λBA
-BE
=(e1
-1)λ 2
+e1 λ 2 e2
∵
,AG
共线,∴AD
=
-1λ 2 -1
,得λ=λ 2 1 2 2 3
∴
=CG
-BG
=BC 1 3
-e1 2 3 e2
∴
=CF
-BF
=BC
(3 2 1 3
-e1 2 3
)=e2 3 2 CG
∴CG与CF共线,G在CF上
∴三条中线交与一点.