问题 解答题
已知函数f(x)=sin2(x-
π
6
)+cos2(x-
π
3
)+sinx•cosx,x∈R.
(1)求f(x)的最大值及取得最大值时的x的值;
(2)求f(x)在[0,π]上的单调增区间.
答案

(1)由题意得,

f(x)=(sinxcos

π
6
-cosxsin
π
6
)2+(cosxcos
π
3
+sinxsin
π
3
)
2
+sinx•cosx

=sin2x+sinx•cosx+

1
2
=
1
2
(sin2x-cos2x)
+1

=

2
2
sin(2x-
π
4
)+1,

2x-

π
4
=
π
2
+2kπ
(k∈Z),

即x=

8
+kπ(k∈Z)时,函数f(x)取最大值为:
2
2
+1

(2)由0≤x≤π得,-

π
4
≤2x-
π
4
4

∴函数f(x)=

2
2
sin(2x-
π
4
)+1的增区间是:[-
π
4
π
2
].

单项选择题
问答题 论述题