问题 填空题
对于n个向量
a1
a2
a3
an
,若存在n个不全为零的实数k1,k2,…kn,使得:k1
a1
+k2
a2
+k3
a3
+…+kn
an
=0
成立,则称向量
a1
a2
a3
an
是线性相关的.按此规定,能使向量
a1
=(1,0),
a2
=(1,-1),
a3
=(2,2)
是线性相关的实数为k1,k2,k3,则k1+4k3=______.
答案

由题意得k1

a1
+k2
a2
+k3
a3
=
0

则(k1,0)+(k2,-k2)+(2k3,2k3)=(0,0)

k1+k2+2k3=0
2k3-k2=0

两式相加可得k1+4k3=0

故答案为:0

选择题
单项选择题