问题
解答题
求函数y=sin2x+2sinxcosx+3cos2x的最大值.
答案
y=sin2x+2sinxcosx+3cos2x
=(sin2x+cos2x)+2sinxcosx+2cos2x
=1+sin2x+(1+cos2x)
=2+sin2x+cos2x
=2+
sin(2x+2
).π 4
当sin(2x+
)=1时,函数y有最大值,这时y的最大值等于2+π 4
.2
求函数y=sin2x+2sinxcosx+3cos2x的最大值.
y=sin2x+2sinxcosx+3cos2x
=(sin2x+cos2x)+2sinxcosx+2cos2x
=1+sin2x+(1+cos2x)
=2+sin2x+cos2x
=2+
sin(2x+2
).π 4
当sin(2x+
)=1时,函数y有最大值,这时y的最大值等于2+π 4
.2