问题
解答题
设
(1)求
(2)若f(x)=
|
答案
•a
=2+cos2θ b
•c
=2sin2θ+1(2分)d
(1)
•a
-b
•c
=2+cos2θ-2sin2θ-1=cos2θ+1-2sin2θ=2cos2θ(4分)d
∵θ∈(0,
)π 4
∴2cos2θ∈(0,2)
即
•a
-b
•c
的取值范围是(0,2)(7分)d
(2)∵f(
•a
)=b
=
•a
-1b
=1+cos2θ
|cosθ|=2
cosθ2
f(
•c
)=d
=
•c
-1d
|sinθ|=2
sinθ(10分)2
∴f(
•a
)+f(b
•c
)=d
(cosθ+sinθ)=2
+6 2 2 2
∴cosθ+sinθ=
+3 2 1 2
∴(cosθ+sinθ)2=1+
=1+2sinθcosθ3 2
∴sin2θ=3 2
因为θ∈(0,
)所以2θ=π 4
θ=π 3 π 6
故cosθ-sinθ=
-3 2
(14分)1 2
(注亦可:(cosθ-sinθ)2=1-2sinθcosθ=1-
=3 2 4-2 3 4
cosθ-sinθ=±
θ∈(0,
-13 2
)π 4
sinθ<cosθ∴cosθ-sinθ=
-3 2
)1 2