已知向量
求证:△P1P2P3是正三角形. |
证明:
法一:∵
+OP1
+OP2
=0,∴OP3
+OP1
=-OP2
.∴|OP3
+OP1
|=|-OP2
|.OP3
∴|
|2+|OP1
|2+2OP2
•OP1
=|OP2
|2.OP3
又∵|
|=|OP1
|=|OP2
|=1,OP3
∴
•OP1
=-OP2
.1 2
∴|
||OP1
|cos∠P1OP2=-OP2
,1 2
即∠P1OP2=120°.
同理∠P1OP3=∠P2OP3=120°.
∴△P1P2P3为等边三角形.
法二:以O点为坐标原点建立直角坐标系,设P1(x1,y1),P2(x2,y2),P3(x3,y3),
则
=(x1,y1),OP1
=(x2,y2),OP2
=(x3,y3).OP3
由
+OP1
+OP2
=0,OP3
得
∴x1+x2+x3=0 y1+y2+y3=0.
,x1+x2=-x3 y1+y2=-y3.
由|
|=|OP1
|=|OP2
|=1,得x12+y12=x22+y22=x32+y32=1OP3
∴2+2(x1x2+y1y2)=1
∴|
|=P1P2 (x1-x2)2+(y1-y2)2
=x12+x22+y12+y22-2x1x2-2y1y2
=
=2(1-x1x2-y1y2) 3
同理|
|=P1P3
,|3
|=P2P3 3
∴△P1P2P3为正三角形