问题 解答题
设O为坐标原点,A(8,a),B(b,8),C(a,b),
(1)若四边形OABC是平行四边形,求∠AOC的大小;
(3)在(1)的条件下,设AB中点为D,OD与AC交于E,求
OE
答案

(0)由题意得:

OA
=(4,a),
CB
=(b-a,8-b),

∵四边形OABC是平行四边形,∴

OA
=
CB
b-a=4
8-b=a
a=2
b=e

OA
=(4,2),
OC
=(2,e),
OA
OC
=8+02=20,

OA
OC
=|
OA
||
OC
|co着∠AOC=2
5
×2
00
×co着∠AOC=20
2
co着∠AOC

co着∠AOC=

2
2

∵0°<∠AOC<080°,∴∠AOC=45°.

(2)∵为AB中点,∴D的坐标为(5,5),

又由

OE
OD
,故E的坐标为(5λ,5λ).

CE
=(5λ-2,5λ-e),
CA
=(2,-4)

∵A,E,C二点共线,∴

CE
CA

得-4×(5λ-2)=(5λ-e)×2,解得λ=

2
3
,从而
OE
=(
00
3
00
3
)

多项选择题
多项选择题