问题
解答题
已知△OAB的顶点坐标为O(0,0),A(2,9),B(6,-3),点P的横坐标为14,且
(1)求实数λ的值与点P的坐标; (2)求点Q的坐标; (3)若R为线段OQ上的一个动点,试求
|
答案
(1)设P(14,y),则
=(14,y),OP
=(-8,-3-y),由PB
=λOP
,得(14,y)=λ(-8,-3-y),解得λ=-PB
,y=-7,所以点P(14,-7).7 4
(2)设点Q(a,b),则
=(a,b),又OQ
=(12,-16),则由AP
•OQ
=0,得3a=4b①又点Q在边AB上,所以AP
=12 -4
,即3a+b-15=0②b+3 a-6
联立①②,解得a=4,b=3,所以点Q(4,3).
(3)因为R为线段OQ上的一个动点,故设R(4t,3t),且0≤t≤1,则
=(-4t,-3t),RO
=(2-4t,9-3t),RA
=(6-4t,-3-3t),RB
+RA
=(8-8t,6-6t),则RB
•(RO
+RA
)=-4t(8-8t)-3t(6-6t)=50t2-50t=50(t-RB
)2-1 2
(0≤t≤1),故25 2
•(RO
+RA
)的取值范围为[-RB
,0].25 2