问题 选择题
设向量
m
=(x,y),(x≥0,y≥0),|
m
|=1,
n
=(1,
3
),a=
m
n
,则T=(a-
2
a
)2+2(a+
2
a
)
的最大值为(  )
A.8B.7C.4
2
D.4
2
+1
答案

|

m
|=1,x≥0,y≥0

可设

m
=(cosθ,sinθ),θ∈[0,
π
2
]
,又
n
=(1,
3​
)

a=

m
n
=cosθ+
3
sinθ
=2sin(θ+
π
6
)
θ∈[0,
π
2
]

∴a∈[1,2]

T=(a-

2
a
)2+2(a+
2
a
)=(a+
2
a
)
2
+2(a+
2
a
)-8
=(a+
2
a
+1)
2
-9

∵a∈[1,2]

a+

2
a
+1∈[2
2
+1
,4]

T=(a-

2
a
)2+2(a+
2
a
)的最大值为16-9=7

故选B

单项选择题 共用题干题
单项选择题