问题 选择题
已知:O是△ABC所在平面上的一点且满足:
OA
+
sinA
sinA+sinB
(
OB
-
OA
)+
sinB
sinB+sinA
(
OC
-
OA
)=
0
,则点O在(  )
A.AB边上B.AC边上C.BC边上D.△ABC内心
答案

OA
+
sinA
sinA+sinB
(
OB
-
OA
)+
sinB
sinB+sinA
(
OC
-
OA
)=
0

∴(sinA+sinB)

OA
+sinA
AB
+sinB
AC
=
0

即sinA

OB
+sinB
OC
=
0

sinA

OB
=-sinB
OC

OB
OC
共线,即点O在BC边上

故选C.

单项选择题
单项选择题