问题
选择题
已知O为△ABC所在平面内一点,满足|
|
答案
设
=OA
,a
=OB
,b
=OC
,则c
=BC
-c
,b
=CA
-a
,c
=AB
- b
.a
由题可知,|
|2+|OA
|2=|BC
|2+|OB
|2=|CA
|2+|OC
|2,AB
∴|
|2+|a
-c
|2=|b
|2+|b
-a
|2,化简可得c
•c
=b
•a
,即(c
-b
)•a
=0,c
∴
•OC
=0,∴AB
⊥AB
,即OC⊥AB.OC
同理可得OB⊥AC,OA⊥BC.
∴O是△ABC的垂心.
故选C.