问题 解答题
已知向量
a
=(cosx,sinx),
b
=(
2
2
)
,若
a
b
=
8
5
,且
π
4
<x<
π
2

(1)求cos(x-
π
4
)
tan(x-
π
4
)
的值;
(2)求
sin2x(1+tanx)
1-tanx
的值.
答案

因为:

a
b
=
2
cosx+
2
sinx=2sin(x+
π
4

∴2sin(x+

π
4
)=
8
5
⇒sin(x+
π
4
)=
4
5
⇒cos(
π
4
-x)=
4
5

(1)∴cos(x-

π
4
)=
4
5

π
4
<x<
π
2
⇒0<x-
π
4
π
4
⇒sin(x-
π
4
)=
1-cos 2(x-
π
4
)
=
3
5

∴tan(x-

π
4
)=
sin(x-
π
4
)
cos(x-
π
4
)
=
3
5
4
5
=
3
4

(2)∵

sin2x(1+tanx)
1-tanx

=sin2x•

1+tanx
1-tanx

=cos(

π
2
-2x)•tan(x+
π
4

=cos(2x-

π
2
)•cot(
π
4
-x)

=-cos2(x-

π
4
)•
1
tan(x-
π
4
)

=-[2cos2(x-

π
4
)-1]×
1
3
4

=-[2×(

4
5
)2-1]×
4
3

=-

28
75

选择题
单项选择题