如图所示,矩形单匝导线框abcd竖直放置,其下方有一磁感应强度为B的有界匀强磁场区域,该区域的上边界PP′水平,并与线框的ab边平行,磁场方向与线框平面垂直.已知线框ab边长为L1,ad边长为L2,线框质量为m,总电阻为R.现无初速地释放线框,在下落过程中线框所在平面始终与磁场垂直,且线框的ab边始终与PP′平行.重力加速度为g.若线框恰好匀速进入磁场,求:
(1)dc边刚进入磁场时,线框受安培力的大小F;
(2)dc边刚进入磁场时,线框速度的大小υ;
(3)在线框从开始下落到ab边刚进入磁场的过程中,重力做的功W.
(1)由于线框匀速进入磁场,则线框进入磁场时受安培力的大小F=mg.
(2)线框dc边刚进入磁场时,
感应电动势 E=BL1v
感应电流 I=E R
dc边受安培力的大小 F=BIL1
又 F=mg
解得线框速度的大小 v=mgR B2 L 21
(3)在线框从开始下落到dc边刚进入磁场的过程中,重力做功W1,根据动能定理得
W1=
mv21 2
在线框从dc边刚进入磁场到ab边刚进入磁场的过程中,重力做功W2.
W2=mgL2
所以 W=W1+W2=
+mgL2m3g2R2 2B4 L 41
答:(1)dc边刚进入磁场时,线框受安培力的大小F=mg;
(2)dc边刚进入磁场时,线框速度的大小υ=
;ngR B2 L 21
(3)在线框从开始下落到ab边刚进入磁场的过程中,重力做的功W=
+mgL2.m3g2R2 2B4 L 41