问题 选择题
已知向量
a
b
是相互垂直的单位向量,且|
c
|=13,
c
a
=3
c
b
=4
,则对于任意的实数t1,t2,|
c
-t1
a
-t2
b
|的最小值为(  )
A.5B.7C.12D.13
答案

|

c
-t1
a
-t2
b
|2=
c
2+t12
a
2+t22
b
2-2t1
c
a
)-2t2
c
b
)+2t1t2
a
b

a
b
是相互垂直的单位向量,且|
c
|=13,
c
a
=3
c
b
=4

∴|

c
-t1
a
-t2
b
|2=169+t12+t22-6t1-8t2=(t1-3)2+(t2-4)2+144

由此可得,当且仅当t1=3,t2=4时,|

c
-t1
a
-t2
b
|2的最小值为144.

∴|

c
-t1
a
-t2
b
|的最小值为
144
=12

故选:C

选择题
单项选择题