问题 填空题
设a-b=2+
3
,b-c=2-
3
,则a2+b2+c2-ab-ac-bc=______.
答案

∵a-b=2+

3
,b-c=2-
3
,两式相加得,a-c=4,

原式=a2+b2+c2-ab-bc-ac

=

2a2+2b2+2c2-2ab-2bc-2ca
2

=

(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)
2

=

(a-b)2+(b-c)2+(a-c)2
2

=

(2+
3
)
2
+(2-
3
)
2
+42
2

=

4+3+4
3
+4+3-4
3
+16
2

=15.

单项选择题
填空题