问题 填空题
若O为△ABC所在平面内一点,且满足(
OB
-
OC
)(
OB
+
OC
-2
OA
)=0
,则△ABC的形状为______.
答案

(

OB
-
OC
)•(
OB
+
OC
-2
OA
)

=(

OB
-
OC
)[(
OB
-
OA
)+(
OC
-
OA
)]

=(

OB
-
OC
)•(
AB
+
AC
)=
CB
•(
AB
+
AC
)

=(

AB
-
AC
)•(
AB
+
AC
)=|
AB
|
2
-|
AC
|
2
=0,

|

AB
|=|
AC
|,

∴△ABC为等腰三角形.

故答案为:等腰三角形

单项选择题
单项选择题