问题
选择题
函数y=cos2xcos
|
答案
∵y=cos2xcos
-2sinxcosxsinπ 5 6π 5
y=cos2xcos
-sin2xsinπ 5
=cos2xcos6π 5
-sin2xsinπ 5 π 5
=cos(2x+
)π 5
∴2x+
∈[2kπ-π,2kπ],π 5
∴x∈[kπ-
,kπ+2π 5
](k∈Z)π 10
故选D.
函数y=cos2xcos
|
∵y=cos2xcos
-2sinxcosxsinπ 5 6π 5
y=cos2xcos
-sin2xsinπ 5
=cos2xcos6π 5
-sin2xsinπ 5 π 5
=cos(2x+
)π 5
∴2x+
∈[2kπ-π,2kπ],π 5
∴x∈[kπ-
,kπ+2π 5
](k∈Z)π 10
故选D.