由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为cosx的二次多项式.
对于cos3x,我们有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可见cos3x可以表示为cosx的三次多项式.
一般地,存在一个n次多项式Pn(t),使得cosnx=Pn(cosx),这些多项式Pn(t)称为切比雪夫(P.L.Tschebyscheff)多项式.
(1)请尝试求出P4(t),即用一个cosx的四次多项式来表示cos4x.
(2)化简cos(60°-θ)cos(60°+θ)cosθ,并利用此结果求sin20°sin40°sin60°sin80°的值.
(1)由于cos4x=cos(2x+2x)=cos22x-sin22x
=(2cos2x-1)2-(2sinxcosx)2
=4cos4x-4cos2x+1-4sin2cos2x
=4cos4x-4cos2x+1-4(1-cos2x)cos2x
=8cos4x-8cos2x+1(3分)
(2)cos(60°-θ)cos(60°+θ)cosθ=(
cosθ+1 2
sinθ)(3 2
cosθ-1 2
sinθ)cosθ3 2
=(
cos2θ-1 4
sin2θ)cosθ=3 4
(4cos2θ-3)cosθ=1 4
cos3θ(7分)1 4
∵sin20°sin40°sin60°sin80°=cos70°cos50°cos30°cos10°
=
cos10°cos(60°-10°)cos(60°+10°)=3 2
×3 2
cos30°=1 4 3 16