问题 填空题

微分方程 (2xsiny+3x2y)dx+(x3+x2cosy+y2)dy=0 的通解是______.

答案

参考答案:[*]

解析:

[分析]: 这不是一阶线性方程与变量可分离方程,也不是齐次方程与伯努利方程,因此,考察其是否是全微分方程.将方程表为Pdx+Qdy=0,因在全平面上
[*]
所以是全微分方程,求通解归结为求Pdx+Qdy的原函数u(x,y).
方法1° 凑微分法.由于
(2xsiny+3x2y)dx+(x3+x2cosy+y2)dy
[*]
因此,通解为[*]其中C为[*]常数.
方法2° 不定积分法.由[*]对x积分得
u=x2siny+x3y+C(y).
又由[*]
得[*]
因此得通解[*]其中C为[*]常数.

选择题
单项选择题