问题
填空题
设0<x<1<y<2,则
|
答案
∵0<x<1<y<2,
∴原式=
+(x-y)2+4(x-y)+4
-(x-1)2
,(y-2)2
=
+(x-y+2)2
-(x-1)2
,(y-2)2
=x-y+2+1-x-2+y,
=1.
故答案为:1.
设0<x<1<y<2,则
|
∵0<x<1<y<2,
∴原式=
+(x-y)2+4(x-y)+4
-(x-1)2
,(y-2)2
=
+(x-y+2)2
-(x-1)2
,(y-2)2
=x-y+2+1-x-2+y,
=1.
故答案为:1.