问题
填空题
类比命题:“若A、B、C三点不共线,D是线段AB的中点,则
|
答案
由平面图形的性质类比猜想空间几何体的性质,
一般的思路是:点到线,线到面,或是二维变三维;
由题目中“若A、B、C三点不共线,D是线段AB的中点,则
=CD
(1 2
+CA
)”,CB
可以推断:“若A、B、C、D四点不共面,G为△ABC的重心,则
=DG
(1 3
+DA
+DB
).”DC
故答案为:若A、B、C、D四点不共面,G为△ABC的重心,则
=DG
(1 3
+DA
+DB
).DC