问题
解答题
已知f(x)=2sin(x+
(1)求α; (2)当x∈[
|
答案
(1)因为f(x)=2sin(x+
)-π 6
tanα•cos24 3 3
,∴f(x 2
)=2sin(π 2
+π 2
)-π 6
tanα•cos24 3 3
=π 4
-3
tanα•4 3 3
=1 2
-2,3
所以,tanα=
,又 α∈(0,π),故 α=3
.π 3
(2)由(1)得,f(x)=2sin(x+
)-π 6
tanα•cos24 3 3
=2sin(x+x 2
)-4cos2π 6
=x 2
sinx+cosx-2(1+cosx)=2(3
sinx-3 2
cosx)-2=2sin(x-1 2
)-2,π 6
所以,y=f(x+α)=f(x+
)=2sin(x+π 3
-π 3
)-2=2sin(x+π 6
)-2.π 6
因为
≤x≤π,所以 π 2
≤x+2π 3
≤π 6
,∴-7π 6
≤sin(x+1 2
)≤π 6
,∴-3≤2sin(x-3 2
)-2≤π 6
-2,3
因此,函数y=f(x+α)的值域为[-3,
-2].3