问题 问答题

数形结合思想是一种重要的数学思想,它的实质就是根据数与形之间的对应关系,通过数与形的相互转化来解决问题.用数形结合思想解题能简化推理和运算,具有直观、快捷的优点.请简要谈谈数形结合思想在解哪些类型的问题时可以发挥作用,使问题得到更好的解决.

答案

参考答案:纲要:(1)在解方程或解不等式的问题中,若方程或不等式中的代数式能分拆成一次函数、二次函数、对数函数、指数函数和三角函数等形式,则一般可利用函数的图像直观地使问题获得解决;(2)复数与三角函数概念的建立离不开直角坐标系,因此这些概念含有明显的几何意义,采用数形结合解决此类问题非常直观清晰;(3)二元一次方程,二元二次方程能与直线、二次曲线相对应,用数形结合法解此类问题,能在解题过程中充分利用平面几何和解析几何的知识,使解题思路更开阔.

单项选择题
问答题 简答题