问题
问答题
如图所示,质量为M,倾角为α的斜面体(斜面光滑且足够长)被固定在水平地面上,斜面顶端与劲度系数为k、自然长度为l的轻质弹簧相连,弹簧的另一端连接着质量为m的物块.压缩弹簧使其长度为
l时将物块由静止开始释放,物块在斜面上做简谐振动,重3 4
力加速度为g.
(1)求物块处于平衡位置时弹簧的长度;
(2)求弹簧的最大伸长量.
答案
(1)平物体平衡时,受重力、支持力和弹簧的弹力,
平衡位置即弹簧弹力等于重力沿斜面分力,即k△x=mgsinα,故△x=mgsinα k
所以弹簧长度x=l+mgsinα k
(2)根据简谐运动的对称性,缩弹簧使其长度为
l时将物块由静止开始释放,故其振幅为:3 4
A=
l+△x=1 4
l+1 4 mgsinα k
故其最大伸长量为:A+△x=
l+1 4
+mgsinα k
=mgsinα k
+L 4 2mgsin∂ k
答:(1)物块处于平衡位置时弹簧的长度为 L+mgsin∂ k
(2)弹簧的最大伸长量为
+L 4 2mgsin∂ k