问题
解答题
已知定点A(-1,0)、B(1,0),动点M满足:
(Ⅰ)试求动点M的轨迹方程,并说明方程所表示的曲线; (Ⅱ)当k=2时,求|
|
答案
(I)设M(x,y),则
=(x+1,y),AM
=(x-1,y)BM
由题意可得,
•AM
=kBM
2MC
即(x+1,y)•(x-1,y)=k[x2+(y-1)2]
整理可得,(1-k)))x2+(1-k)y2+2ky=1+k即为所求的动点轨迹方程
①k=1时,方程化为y=1,表示过(0,1)且与x轴平行的直线
②当k≠1时,方程可化为x2+(y+
)2=k 1-k
表示以(0,1 (1-k)2
)为圆心,以|k k-1
|为半径的圆1 1-k
(II)当k=2时,方程可化为x2+(y-2)2=1
|
+2AM
|=BM
=(3x-1)2+9y2 9x2-6x+1+9y2
=
=9(x2+y2)-6x+1 9(4y-3)-6x+1
=36y-6x-26
设x=cosθ y=2+sinθ
则|
+2AM
|=BM
=46+36sinθ-6cosθ 46+6
sin(θ+α)37
sinα=- 1 37 cosα= 6 37
∴
-3=37
≤|46-6 37
+2AM
|≤BM
=46+6 37
+337
∴求|
+2AM
|的最大值为3+BM
,最小值37
-337