问题 选择题
在△ABC中,若
a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
,则△ABC的形状是(  )
A.等腰三角形B.等边三角形
C.直角三角形D.等腰直角三角形
答案

a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
结合正弦定理可得

sinA
cos
A
2
=
sinB
cos
B
2
=
sinC
cos
C
2
,即
2sin
A
2
cos
A
2
cos
A
2
=
2sin
B
2
cos
B
2
cos
B
2
=
2sin
B
2
cos
B
2
cos
C
2

化简得sin

A
2
=sin
B
2
=sin
C
2
,又
A
2
B
2
C
2
∈(0,
π
2
)此时正弦函数单调递增,

A
2
=
B
2
=
C
2
,又A+B+C=π,故A=B=C=
π
3
,即△ABC为等边三角形

故选B.

单项选择题
选择题