问题 解答题
已知函数f(x)=2
3
sinxcosx+2cos2x-1(x∈R),g(x)=|f(x)|.
(I)求函数g(x)的单调递减区间;
(II)若A是锐角△ABC的一个内角,且满足f(A)=
2
3
,求sin2A的值.
答案

(Ⅰ) f(x)=2

3
sinxcosx+2cos2x-1=
3
sin2x+cos2x=2sin(2x+
π
6
)

g(x)=|2sin(2x+

π
6
)|,∵y=|sinx|的单调递减区间为[kπ+
π
2
,kπ+π]
,(k∈Z).

∴由kπ+

π
2
≤2x+
π
6
≤kπ+π   得:
2
+
π
6
≤x≤
2
+
12

则g(x)的单调递减区间为[

2
+
π
6
2
+
12
](k∈Z).  

(Ⅱ)∵f(A)=

2
3

即:sin(2A+

π
6
)=
1
3

∵A∈(0,

π
2
),且sin(2A+
π
6
)>
0,

2A+

π
6
∈(0,π)

2A+

π
6
∈(0,
π
2
),则sin(2A+
π
6
)=
1
3
1
2
=sin
π
6
,∴2A+
π
6
π
6
,这不可能,

2A+

π
6
∈(
π
2
,π),所以cos(2A+
π
6
)=-
2
2
3

sin2A=sin[(2A+

π
6
)-
π
6
]=sin(2A+
π
6
)cos
π
6
-cos(2A+
π
6
)sin
π
6
=
1
3
3
2
+
2
2
3
1
2
=
3
+2
2
6

sin2A=

3
+2
2
6

判断题
单项选择题 A3/A4型题