问题
解答题
在△ABC中,内角A,B,C所对的边长分别是a,b,c. (Ⅰ)若c=2,C=
(Ⅱ)若sinC+sin(B-A)=sin2A,试判断△ABC的形状. |
答案
(Ⅰ)由余弦定理 及已知条件得,a2+b2-ab=4,….(3分)
又因为△ABC的面积等于
,所以3
absinC=1 2
,得ab=4.(5分)3
联立方程组
解得a=2,b=2.(7分)a2+b2-ab=4 ab=4
(Ⅱ)由题意得:sinC+sin(B-A)=sin2A
得到sin(A+B)+sin(B-A)=sin2A=2sinAcoA
即:sinAcosB+cosAsinB+sinAcosB-cosAsinB=2sinAcoA
所以有:sinBcosA=sinAcosA,(10分)
当cosA=0时,A=
,△ABC为直角三角形(12分)π 2
当cosA≠0时,得sinB=sinA,由正弦定理得a=b,
所以,△ABC为等腰三角形.(14分)