问题 填空题


第16~25小题.要求判断每题给出的条件(1)和(2)能否充分支持题干所陈述的结论.A、B、C、D、E五个选项为判断结果.请选择一项符合试题要求的判断.
A.条件(1)充分,但条件(2)不充分.
B.条件(2)充分,但条件(1)不充分.
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.
D.条件(1)充分,条件(2)也充分.
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.

将图中矩形的A,B,C,D,E五个区域用红、黄、绿、蓝、白五种颜色之一着色,使相邻的区域着有不同的颜色,则共有360种着色方式. (1) (2)

答案

参考答案:A

解析:[解] 对于条件(1),依次对图中的五个区域着色,则区域A有5种着色方式,区域B有4种着色方式,区域C有3种着色方式,区域D有2种着色方式,区域E有3种着色方式,所以,共有5×4×3×2×3=360种着色方式,条件(1)充分. 对于条件(2),类似地分析,可知该矩形各区域的着色方式共有5×4×3×3×3=540种,故条件(2)不充分. 故本题应选A.

填空题
多项选择题