问题 解答题
已知向量
m
=(2sin
x
2
,1),
n
=(cos
x
2
,1),设函数f(x)=
m
n
-1.
(1)求函数y=f(x)的值域;
(2)已知△ABC为锐角三角形,A为△ABC的内角,若f(A)=
3
5
,求f(2A-
π
3
)的值.
答案

(1)由f(x)=

m
n
-1,得f(x)=2sin
x
2
cos
x
2
+1-1=sinx,

所以y=f(x)的值域为[-1,1];

(2)由已知得A为锐角,f(A)=sinA=

3
5

则cosA=

1-(
3
5
)2
=
4
5
,得sin2A=2sinAcosA=2×
3
5
×
4
5
=
24
25

cos2A=1-2sin2A=1-2×(

3
5
)2=
7
25

所以f(2A-

π
3
)=sin(2A-
π
3
)=sin2Acos
π
3
-cos2Asin
π
3
=
24
25
×
1
2
-
7
25
×
3
2
=
24-7
3
50

单项选择题
单项选择题