问题 解答题
在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.
答案

(1)由|

AC
|=|
BC
|得(3-cosθ)2+sin2θ=cos2θ+(3-sinθ)2

化简得tanθ=1,

因为θ∈(

π
2
2
),

所以θ=

4

(2)α+β=

2
3
θ=
6
y=2-
1-cos2α
2
-
1+cos2β
2
=1+
1
2
(cos2α-cos2β)

=1+

1
2
[cos(
3
-2β)-cos2β]=1-
1
2
(
3
2
sin2β+
1
2
cos2β)=1-
1
2
sin(2β+
π
6
)

因为0<β<

π
2
π
6
<2β+
π
6
6
-
1
2
<sin(2β-
π
3
)≤1

所以

1
2
≤1-
1
2
sin(2β+
π
6
)<
3
4

β=

π
6
α=
3
时,y取最小值,

ymin=

1
2

选择题
名词解释