问题 选择题
已知
e1
e2
是平面上的两个单位向量,且|
e1
+
e2
|≤1
OP
=m
e1
, 
 OQ
=n
e2
,若O为坐标原点,m,n均为正常数,则(
OP
+
OQ
)2
的最大值为(  )
A.m2+n2-mnB.m2+n2+mnC.(m+n)2D.(m-n)2
答案

由题意可得|

e1
|=|
e2
|=1,
e1
2
+
e2
2
+2
e1
e2
≤1,∴
e1
 •
e2
≤-
1
2

(

OP
+
OQ
)2=
OP
2
+
OQ
2
+2
OP
OQ
=m2+n2+2mn
e1
 •
e2
≤m2+n2-mn,

故选A.

单项选择题 A1型题
单项选择题 案例分析题