问题 解答题
已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y2=2px(p>0)上的两个动点,O是坐标原点,向量
OA
OB
满足|
OA
+
OB
|=|
OA
-
OB
|
,设圆C的方程为x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)证明线段AB是圆C的直径;
(2)当圆C的圆心到直线x-2y=0的距离的最小值为
2
5
5
时,求p的值.
答案

(1)∵向量

OA
OB
满足|
OA
+
OB
|=|
OA
-
OB
|

(

OA
+
OB
2=(
OA
-
OB
2

OA
2+2
OA
OB
+
OB
2
=
OA
2
-2
OA
OB
+
OB
2

整理得

OA
OB
=0

∵点A(x1,y1),B(x2,y2

OA
=(x1,y1),
OB
=(x2,y2

∴x1x2+y1y2=0①

设点M(x,y)是以线段AB为直径的圆上的任意一点,

MA
MB
=0

即(x-x1)(x-x2)+(y-y1)(y-y2)=0

展开上式并将 ①代入得x2+y2-(x1+x2)x-(y1+y2)y=0

故线段AB是圆C的直径.

(Ⅱ)设圆C的圆心为C(x,y),

则x=

x1+x2
2
,y=
y1+y2
2

∵y12=2px1,y22=2px2(p>0),

∴x1x2=

y12y22
4p2

又∵x1x2+y1y2=0

∴x1x2=-y1y2

∴-y1y2=

y12y22
4p2

∴y1y2=-4p2

∴x=

x1+x2
2
=
1
4p
(y12+y22

=

1
4p
(y12+y22+2y1y2)-
y1y2
2p

=

1
p
(y2+2p2

∴圆心的轨迹方程为:y2=px-2p2

设圆心C到直线x-2y=0的距离为d,,则

d=

|x-2y|
5

=

|
1
p
(y2+2p2)-2y|
5

=

|(y-p)2+p2|
5
p

当y=p时,d有最小值

p
5

由题设得

p
5
=
2
5
5

∴p=2

选择题
单项选择题