已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y2=2px(p>0)上的两个动点,O是坐标原点,向量
(1)证明线段AB是圆C的直径; (2)当圆C的圆心到直线x-2y=0的距离的最小值为
|
(1)∵向量
,OA
满足|OB
+OA
|=|OB
-OA
|,OB
∴(
+OA
) 2=(OB
-OA
) 2OB
即
2+2OA
•OA
+OB
2=OB
2-2OA
•OA
+OB
2OB
整理得
•OA
=0OB
∵点A(x1,y1),B(x2,y2)
∴
=(x1,y1),OA
=(x2,y2)OB
∴x1x2+y1y2=0①
设点M(x,y)是以线段AB为直径的圆上的任意一点,
则
•MA
=0MB
即(x-x1)(x-x2)+(y-y1)(y-y2)=0
展开上式并将 ①代入得x2+y2-(x1+x2)x-(y1+y2)y=0
故线段AB是圆C的直径.
(Ⅱ)设圆C的圆心为C(x,y),
则x=
,y=x1+x2 2 y1+y2 2
∵y12=2px1,y22=2px2(p>0),
∴x1x2=y12y22 4p2
又∵x1x2+y1y2=0
∴x1x2=-y1y2
∴-y1y2=y12y22 4p2
∴y1y2=-4p2
∴x=
=x1+x2 2
(y12+y22)1 4p
=
(y12+y22+2y1y2)-1 4p y1y2 2p
=
(y2+2p2)1 p
∴圆心的轨迹方程为:y2=px-2p2
设圆心C到直线x-2y=0的距离为d,,则
d=|x-2y| 5
=|
(y2+2p2)-2y|1 p 5
=|(y-p)2+p2|
p5
当y=p时,d有最小值
,p 5
由题设得
=p 5 2 5 5
∴p=2