问题 解答题
已知函数f(x)=sin2x+2
3
sinxcosx+3cos2x.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)已知f(a)=3,且a∈(0,π),求a的值.
答案

(Ⅰ)f(x)=sin2x+2

3
sinxcosx+3cos2x=
3
sin2x+2×
1+cos2x
2
+1=
3
sin2x+cos2x+2

=2sin(2x+

π
6
)+2.

所以最小正周期为:T=

2

-

π
2
+2kπ≤2x+
π
6
π
2
+2kπ,得-
π
3
+kπ≤x≤
π
6
+kπ

∴函数f(x)的单调增区间为 [-

π
3
+kπ,
π
6
+kπ] (k∈Z).

(Ⅱ)由f(a)=3,得2sin(2a+

π
6
)+2=3.

∴sin(2a+

π
6
)=
1
2

2a+

π
6
=
π
6
+2k1π或2a+
π
6
=
6
+2k2π

即a=k1π或a=

π
3
+k2π.

∵a∈(0,π),

∴a=

π
3

单项选择题 A1/A2型题
单项选择题 A1/A2型题