问题
解答题
已知函数f(x)=sin2x+2
(Ⅰ)求函数f(x)的最小正周期及单调递增区间; (Ⅱ)已知f(a)=3,且a∈(0,π),求a的值. |
答案
(Ⅰ)f(x)=sin2x+2
sinxcosx+3cos2x=3
sin2x+2×3
+1=1+cos2x 2
sin2x+cos2x+23
=2sin(2x+
)+2.π 6
所以最小正周期为:T=
=π2π 2
由-
+2kπ≤2x+π 2
≤π 6
+2kπ,得-π 2
+kπ≤x≤π 3
+kπ.π 6
∴函数f(x)的单调增区间为 [-
+kπ,π 3
+kπ] (k∈Z).π 6
(Ⅱ)由f(a)=3,得2sin(2a+
)+2=3.π 6
∴sin(2a+
)=π 6
.1 2
∴2a+
=π 6
+2k1π或2a+π 6
=π 6
+2k2π,5π 6
即a=k1π或a=
+k2π.π 3
∵a∈(0,π),
∴a=
.π 3