问题
解答题
已知:f(x)=cosx-cos(x+
(1)求函数f(x)在R上的最大值和最小值; (2)在三角形ABC中,a,b,c分别是角A,B,C的对边,且f(A)=1,三角形ABC的面积为6
|
答案
(1)f(x)=-2sin(x+
)sin(-π 6
)=sin(x+π 6
),π 6
∴当x+
=2kπ+π 6
,k∈Z,即x=2kπ+π 2
,k∈Z时,f(x)max=1,当x+π 3
=2kπ-π 6
,k∈Z,即x=2kπ-π 2
,k∈Z时,f(x)min=-1;2π 3
(2)∵f(A)=sin(A+
)=1,A为三角形的内角,π 6
∴A=
,π 3
又S△ABC=
bcsinA=61 2
,即3
×4c×1 2
=63 2
,3
∴c=6,
根据余弦定理得:a2=b2+c2-2bccosA=28,
解得:a=2
.7