问题
选择题
在△ABC中,角A、B、C对边的边长分别是a、b、c,下列条件中能够判断△ABC是等腰三角形的是( )
A.asinB=bsinA
B.acosB=bsinA
C.asinA=bsinB
D.asinB=bcosB
答案
由正弦定理得:
=a sinA
=2R(R为三角形外接圆的半径),b sinB
得到a=2RsinA,b=2RsinB,
A、asinB=bsinA化为:sinAsinB=sinBsinA,本选项不能判断出△ABC为等腰三角形;
B、acosB=bsinA化为:sinAcosB=sinBsinA,∵B∈(0,π),由sinA≠0,得到cosB=sinB,即tanB=1,得到B=
,本选项不能判断出△ABC为等腰三角形;π 4
C、∴asinA=bsinB化为:2Rsin2A=2Rsin2B,即sin2A=sin2B,∵A和B都为三角形的内角,∴sinA=sinB,
∴A=B或A+B=π(舍去),则a=b,即△ABC为等腰三角形,本选项能判断△ABC为等腰三角形;
D、asinB=bcosB化为sinAsinB=sinBcosB,∵B∈(0,π)
由sinB≠0,得到sinA=cosB,得到A+B=
,本选项不能判断出△ABC为等腰三角形;π 2
故选C