问题
选择题
在△ABC中,sin2
|
答案
因为sin2
=A 2
=c-b 2c
,即1-cosA 2
=cosA,由余弦定理可得b c
=b c
,b2+c2-a2 2bc
可得a2+b2=c2,所以三角形是直角三角形.
故选B.
在△ABC中,sin2
|
因为sin2
=A 2
=c-b 2c
,即1-cosA 2
=cosA,由余弦定理可得b c
=b c
,b2+c2-a2 2bc
可得a2+b2=c2,所以三角形是直角三角形.
故选B.