问题 填空题
计算
1+
1
12
+
1
22
+
1+
1
22
+
1
32
+
1+
1
32
+
1
42
1+
1
20092
+
1
20102
=______.
答案

∵n(n+1)

1+
1
n2
+
1
(n+1)2
=
n2(n+1)2+2n(n+1)+1
=n(n+1)+1,

1+
1
n2
+
1
(1+n)2
=
n(n+1)+1
n(n+1)
=1+
1
n
-
1
n+1

∴原式=(1+

1
1
-
1
2
)+(1+
1
2
-
1
3
)+(1+
1
3
-
1
4
)+…+(1+
1
2009
-
1
2010
)

=2009+1-

1
2010
=2009
2009
2010

故答案为2009

2009
2010

填空题
单项选择题